Reducing Data Replication Overhead in DHT Based
Peer-to-Peer System

Kyungbaek Kim and Daeyeon Park

Department of Electrical Engineering & Computer Science,
Division of Electrical Engineering,
Korea Advanced Institute of Science and Technology (KAIST),
373-1 Guseong-dong, Yuseong-gu, Daejeon 305-701, Republic of Korea
kbkim@sslab.kaist.ac.kr, daeyeon@ee.kaist.ac.kr

Abstract. DHT based p2p systems are appeared to provide scalable storage ser-
vices with idle resource from many unreliable clients. If a DHT is used in storage
intensive applications where data loss must be minimized, quick replication is
especially important to replace lost redundancy on other nodes in reaction to fail-
ures. To achieve this easily, the simple replication method directly uses the con-
sistent set such as the leaf set and the successor list. However, this set is tightly
coupled to the current state of nodes and the traffic needed to support this repli-
cation can be high and bursty under churn.

This paper explores efficient replication methods that only glimpse the con-
sistent set to select a new replica. We propose two types of replication methods
: Quorum based replication and Availability based replication. The replicas are
loosely coupled to the consistent set and can eliminate the compulsory replica-
tion under churn. Results from a simulation study suggest that our methods can
reduce network traffic enormously and achieve high data availability in a DHT
based p2p storage system.

Keywords: Peer-to-Peer, Replication, Data availability.

1 Introduction

In these days, peer-to-peer systems have become an extremely popular platform for
large-scale content sharing, even the p2p based file systems appear. Unlike client/server
model based storage systems, which centralize the management of data in a few highly
reliable servers, peer-to-peer storage systems distribute the burden of data storage and
communications among tens of thousands of clients. The wide-spread attraction of this
model arises from the promise that idle resources may be efficiently harvested to pro-
vide scalable storage services. To promise that, a lot of research papers discussed the
Distributed Hash Table (DHT) based p2p routing algorithms [[1] [2]] [3] [4] and we call
the p2p system which uses the DHT based p2p routing algorithm the structured p2p
system.

These structured p2p systems achieve the efficient and bounded lookup for the re-
quested object. However, they poorly support the acceptable levels of data availabil-
ity [[L1]] [12]. The main problem is the ad hoc manner in which p2p systems are con-
structed. In contrast to traditional systems, peer-to-peer systems are composed of com-
ponents with extremely heterogeneous availabilities - individually administered host

M. Gerndt and D. Kranzlmiiller (Eds.): HPCC 2006, LNCS 4208, pp. 915-924] 2006.
(© Springer-Verlag Berlin Heidelberg 2006

916 K. Kim and D. Park

PC’s may be turned on and off, join and leave the system, have intermittent con-
nectivity, and are constructed from low-cost low reliability components. For exam-
ple, one recent study of a popular peer-to-peer file sharing system[7]] found that the
majority of peers had application-level availability rates of under 20% and only 20%
nodes have server-like profiles. In such an environment, failure is no longer an excep-
tional event, but is a pervasive condition. At any point in time the majority of hosts in
the system are unavailable and those hosts that are available may soon stop servicing
requests.

Many structured p2p systems use the simple replication method to cope with the
massively failures of nodes [5] [6] [8]. This simple approach exploits the consistent
set of the successive nodelDs such as successor list of chord [1] and leaf set of pas-
try [2]]. Basically, these sets are used to conserve the routing information to cope with
the failures and when any node joins or leaves, the consistent set of every node which
detects the change of the membership must update to preserve the current state of the
p2p system. Because of this consistent and automated update, many systems use this set
to replicate the responsible objects of each node for the simple lookup and the simple
data management. However, this simple approach makes high network traffic because
of the dynamic membership of the p2p system. For example, if the size of the consistent
set is 8 and the p2p system needs 6 replicas for the target data availability, when one
new node changes its state, the 8 nodes which are the members of the consistent set
of the new node should update their consistent sets. In this case, the simple replication
approach is tightly coupled to the consistent set and 6 replicas should be updated with-
out any relation of the current data availability or the node characteristics. According
to this behavior, the heavily dynamic membership change of p2p systems causes the
compulsory data replication and generates very high network traffic for this replication.
Because of this heavy replication overhead, until now, DHT algorithms are not widely
used in commercial systems yet.

In our paper, we suggest the efficient replication methods to achieve the highly
durable p2p storage system with small maintenance cost. The replicas are loosely cou-
pled to the consistent set and they are interleaved on the consistent set to reduce the
compulsory copies which occur under churn. The method with this concept is called
the Quorum based replication. In this replication, each node keeps the number of repli-
cas more than the target quorum to achieve target data availability. Moreover, we exploit
the node availability and select more reliable nodes as replicas to delay the replication
and to reduce the network cost. This Availability based replication calculates the data
availability whenever the consistent set changes and guarantees the high data availabil-
ity by the numerical value. This replication should predict the node availability of each
node. To do this, each node manages its availability and advertises it to all members
of the consistent set by piggybacking it to the periodic ping message which has been
already used to detect node failures on the consistent set.

Our replication methods need additional information for replicas and interleave the
replicas. Unlike the simple replication, sometimes, each node does not have the objects
which are serviced by the right next neighbors such as successor or predecessor of
chord [[]. In this case, each node should contain the information for the replicas of
all members on the consistent set to guarantee the correct data routing whenever any

Reducing Data Replication Overhead 917

node fails or leaves. Because of this complication of replication methods, subtle data
management should be needed under churn.

We evaluate the effect of our replication method for the p2p system by using an
event driven simulation. We compare the network traffic for various target availability
and various node characteristics between the simple replication and the proposed repli-
cation. We show that our methods enormously reduce the network traffic to achieve the
same target availability.

The rest of this paper is organized as follow. Section[2briefly presents the DHT based
p2p system and problems of the simple replication. Section [3| presents our proposed
replication methods for the durable p2p storage system. The performance evaluation is
on section @l We mention other related works in section Bl Finally, we conclude this
paper on section[d

2 Background

There are many DHT based p2p algorithms such as chord, pastry, tapestry and can.
Each node in the DHT based p2p system gets a 128-bit node identifier (nodeID). The
nodelD is used to indicate a node’s position in a circular ID space and it is assumed that
nodelDs are generated such that the resulting set of nodeIDs is uniformly distributed
in the 128-bit ID space. Each node is responsible for storing and servicing the objects
which are on the range between its node and a neighbor node. This object range of a
node changes dynamically under churn. Assuming a network consisting of N nodes,
the DHT based p2p system can route to the numerically closest node to a given object
key in less than O(loga N) steps.

These algorithms can lookup any data efficiently with DHT, but when the massively
node failures occurs and spoils the information of DHT without any notification, this
efficient lookup can not guarantee the correctness. To cope with the massively node
failures, they use the consistent set such as the successor list of chord and the leaf set
of pastry. This consistent set of a node is composed of the neighbor nodes which locate
numerically near to the node on ID space. This set is tightly coupled to the current state
of nodes and when any node joins or leaves, the consistent set of every node which
detects the change of the membership must update to preserve the current state of the
p2p system. The p2p system guarantees the correctness unless all members of consistent
set fail simultaneously.

This consistent set is used for not only the routing correctness but also the data
availability on durable p2p storage systems such as p2p file systems [S]] [6] and p2p file
sharing systems [8]. Data Availability means the total availability when the multiple
nodes have the data. This availability is obtained by subtracting the probability of that
all nodes which have the data leave from 1. That means if only one node is alive, the
data is available. Like the figure[Ila), one node replicates stored objects to the neighbor
nodes which are the member of consistent set until the replicas are enough to achieve
target data availability. This simple replication guarantees the simple data availability
management and the simple lookup under churn easily and automatically. Because the
consistent set has the current state of nodes and updates immediately under churn, the
p2p system keeps the target data availability automatically. Moreover, because neighbor
nodes of a node already have the replicas of its objects, even if this node leaves, the

918 K. Kim and D. Park

Replicas : 4

D Space — (D@ B O @B -O—®—@>
. —} Consistent set : 6
a) Simple replication for node A

>

b) Updates when node B leaves ¢) Updates when node X Joins

Fig. 1. Simple replication in DHT based p2p

neighbor node automatically replaces it as a servicing node for its object range without
additional object copies.

However, the simple replication causes the more maintenance traffic under churn.
If the number of replicas is N and a node leaves, the new N + 1 replicas are needed
for the affected nodes. In figure [[lb), when a node B leaves, the nodes A, C, D, F
which already have the replicas on node B should make new replicas and node D which
is newly responsible for the object range of node B makes the replica for this range
additionally. Moreover, when a node joins, each affected node copies the objects to
it as a new replica like figure [Ikc). In this case, when node B joins and leaves very
frequently, the compulsory data replications occurs and the heavy data traffic wastes
even if the dynamic behavior of node B can not affect the data availability. According
to this simple behavior and the heavy churn of the p2p participants, the data traffic
needed to support the simple replication is very high and bursty.

3 Proposed Idea

3.1 Quorum Based Replication

The simple replication method basically uses the concept of the quorum. The quorum
means that the fixed minimum number of members of a set which must be present for
its objective to be valid. That is, if the number of the replica for an object is more than
the target quorum, the p2p system considers that the object is available under massive
failures. However, this simple method directly uses the consistent set such as a successor
list or a leaf set which is tightly coupled to the state of the current network. Under
churn, to keep the right information of the network, the affected node should update its
consistent set and the members of this set change very dynamically. Consequently, the
simple replication method is affected by the change of the consistent set and needs too
much traffic to keep the availability of an object. Sometimes, this compulsory copy for
the replica is meaningless to the availability because the new replica leaves soon.

To prevent this compulsory copy, we modify the replication method which is loosely
coupled to the consistent set. Like the figure 2] we add the new information; the replica-
tion set that indicates which node replicates the object. The range of this set is same to
the consistent set, but the update of this set occurs individually. Like the simple method,
the replication only occurs when the number of replicas is fewer than the target quorum.
However, if the leaving node is not a member of the replication set, there is no need to

Reducing Data Replication Overhead 919

Replicas : 4

* '| Consistent set : 6

f Replication Set

Y
o
o
-
o
iy
o
-
-

Avail | 08 | 0.3 | 05| 0.2 | 0.7 | 0.4 [*— Node availabilities

Fig. 2. Metadata for our replication methods

find a new replica and the p2p system can reduce the compulsory copies. When a node
needs a new replica, it selects the numerically closest node from it, because the edge of
the consistent set may change more easily and more frequently than the inner side.

When a new node joins, it gets not only routing information such as DHT and con-
sistent set but also the replication set. Unlike the simple method, a new node already
knows the information of replicas and the data copy only occurs for the object range
which is responsible for it. Other nodes whose consistent sets are affected by the new
node check whether the replication is needed and if it is, the node makes a new replica.
However, because in the general DHT p2p the size of the consistent set is bigger than
the number of replicas, the replication does not occur frequently and the replication set
can interleave the replicas on the consistent set. This behavior increases the chance to
reduce the compulsory copies.

3.2 Availability Based Replication

The quorum based replication considers that each node has the same availability and it
tries to keep the number of replicas above the target quorum to achieve the target data
availability. However, if a new replica is assigned by the node which has low availability,
this node may leave soon and we need another new replica. If we select a new replica
with the node availability, we can select the more available node as a replica and can
reduce the overhead. To achieve this, the consistent set has the availability information
of all members like figure 21

We assume that the node availability is the prediction value how long a node is
alive after it joins the p2p system, because in other research[7] the long lived nodes
generally have the large bandwidth and the big computing power. The figure [3] shows
this availability prediction mechanism. We use the Mean Time To Failure and the Mean
Time To Recover to estimate the node availability. MTTF is the average value how long
a node is alive after it joins and MTTR is the average value how long a node is sleep
after it leaves. We can get MTTF and MTTR by using the last join time, the last leave
time. Unlike MTTR, we periodically update the MTTF by using the current time and the
join time because MTTF can change during a node join the p2p system. The average
value of MTTF and MTTR is obtained by the sum of the weighted value estimation
process. According to these values, we compute the node availability with the equation,
MTTF/(MTTF + MTTR).

The availability information is computed by each node and each node advertises this
information to all members of the consistent set by using the piggyback method. To
detect the node failure, a node sends a ping message to all member of the consistent set.

920 K. Kim and D. Park

™y Teme, Ty 1“';""'“..

Mean Time To Failure (MTTF)
* Time to failure (TTF)
1) At joining measurement : TTF, = Tlave _Ton
2) At periodic measurement : TTF, = Tourent — Tioin
o MTTF, = o *TTF, + (1-0) *MTTF (0 <a <1}
Mean Time To Recover (MTTR)
» Time to Recover { TTR)
- TTRn = T‘Dmn _T'mn 1
« MTTR, = B *TTR, + (1-B) * MTTR,, , (0 < < 1)
Node Availability = MTTF / (MTTF + MTTR)

Fig. 3. Node availability prediction

We piggyback the availability information to this ping message and each node manages
the consistent set with the node availability.

Like the quorum based replication, the availability based replication use the repli-
cation set to make that the replicas are loosely coupled to the consistent set. The main
difference of these replications is the selection of a new replica. In this approach, the
replication only occurs when the data availability is below the target availability. If the
leaving node is not a member of the replication set, there is no need to replicate the data.
Otherwise, if it is a member, we select the most available node among non-members of
the replication set as a new replica.

When a new node joins, the basic operation is similar to the quorum based replica-
tion. The routing table, consistent set and replication set are copied and the other nodes
whose consistent sets are affected by the new node decide whether they make new
replicas. However, because the availability based replication takes care of selecting new
replicas by computing the availability, if all members of a consistent set have averagely
low availability, it need more replicas than the quorum based replication. Sometimes
this behavior takes more bandwidth, but when nodes leave, this subtle replication can
reduce much more bandwidth than the quorum based replication.

3.3 Management of the Replication Set

Unlike the simple replication, our replications interleave the replicas on the consistent
set. When a node fails and its neighbor gets the lookup request, this neighbor may not
have the replicas for the requested object. In this case, the neighbors must forward the
request to the replicas of the failed node for the routing correctness. To do this, each
node should have the replication sets of all members of its consistent set by piggyback-
ing this information to the periodic ping message for its consistent set.

Moreover, we should consider that the change of the object range affects the repli-
cation set. When a new node joins and a target node gets this join request, the ob-
ject range of the target node is divided into two object range and the new node is
responsible for one of them. In this case, the new node simply copies the replication
set and adds the target node as a new replica because it already has the object for

Reducing Data Replication Overhead 921

35

[ss}
= 30 /*
o 25 —
= L
s 20 —
; 15 o B A
T -— == =
s 5 -
o
=0
8 10 12 14

Number of Replicas (#)

|0 Simple -® Quorum A Availability

(a) Total data traffic

- o
”23' 16 — E 16 ———a
T e 2 12 —
5 10 = £ 10 —t—
~ o8 - 8 — —
o *
= n £]
5% . R —
c ye —§ = E
£ 2 — 3 2
S 5 S0
8 10 12 14 8 10 12 14
Number of Replicas (#) Number of Replicas (#)
[~ Simple ‘@ Quorum & Availability [~ Simple ‘@ Quorum & Availability
(b) Join data traffic (c) Leave data traffic

Fig. 4. Data Traffic with various number of replicas

this range. When a node leaves or fails, its neighbor node is responsible for its ob-
ject range. In this case, both replication sets of the failed node and its neighbor node are
merged.

4 Evaluation

4.1 Simulation Setup

We make our p2p simulator which emulates the node behavior on the application layer.
We implement the previous DHT based p2p algorithm, Pastry. We apply the simple
replication and our new replications to the pastry. We use the 160 bit ID space and use
2000 nodes to organize the p2p system. The size of the consistent set is 16 and the
number of replicas is variable from 8 to 14. The target availability for the availability
based replication is decided by the number of replicas. We use the Poisson distribution
to make the dynamic characteristics of nodes and use the exponential distribution to
assign join/leave duration of a node. According to this Poisson distribution, 80% of
total nodes have short lifetime and frequently join/leave and only 20% of total nodes
have the reliable server-like profile. Recent research [7] measures the life distribution
of the p2p nodes and its result is similar to our distribution, and we can tell that our
distribution is similar to the real world.

4.2 Reduction of Data Traffic

The figure[d shows the comparison of average data traffic per a node with various repli-
cation methods. As we expect, the simple replication needs much more data traffic to

922 K. Kim and D. Park

W
S o

o
o

__M

o 0o ;o
>
]

(4
|]

Total Data Traffic (MB)

Mean of Poisson Distribution for Nodes

|* Simple ® Quorum & Availability

(a) Total data traffic

16 p

12
10 T~

16 p

12
10 ° =\

N »

Join Data Traffic { MB }
oM s o ®
>
»
. /
Leave Data Traffic { MB)
oM s o ®
>
./
M

Mean of Poisson Distribution for Nodes Mean of Poisson Distribution for Nodes

|* Simple ® Quorum & Availability |* Simple ® Quorum & Availability

(b) Join data traffic (c) Leave data traffic

Fig. 5. Data Traffic with various node characteristics

achieve the same data availability than our replications. The quorum based replication
reduces the data traffic by about 40% and the availability based replication reduces the
data traffic by about 60%.

To find out the detailed effect of our replications, we separate the join data traffic
from the leave data traffic. When a node joins, the affected nodes update their replicas
and we call the needed traffic the join data traffic. When a node leaves, the needed
data traffic is called the leave data traffic. In the figure and figure the simple
replication uses the similar amount of traffic for join and leave. The main reason is that
the replication is tightly coupled to the consistent set and in both type of the changes,
the similar amount of compulsory copies is needed to support the simple replication.
However, in our two replications, the join data traffic is less than leave data traffic. The
replication set is loosely coupled to the consistent set and when a join occurs, a node
can decide which it makes a new replica. According to this behavior, the replicas are
interleaved on the replication set and we can reduce the number of compulsory copies
when a new node joins.

However, like figure the quorum based replication needs similar amount of
leave data traffic to the simple replication. The quorum based replication does not con-
sider the node characteristics and some new replicas leave the system early after they are
chosen by the other nodes. The figure [d(c)| shows that the availability based replication
solves this problem and needs less leave data traffic than the quorum based replica-
tion. On the other hand, the availability based replication computes the data availability
whenever the membership changes. According to this, it takes more care of selecting
new replicas and it needs more join data traffic than the quorum based replication until
the number of replicas is similar to the size of the consistent set.

Reducing Data Replication Overhead 923

4.3 Effect of Node Dynamicity

The previous results show that our replications reduce the data traffic needed to achieve
the high data availability. In this result, we try to find out the effect of our replica-
tions on the various node characteristics. The figure [l shows the needed data traffic for
each replication method when the mean of the Poisson distribution changes from 2 to
7. When the mean value increases, the average life time of a node increases. In this
simulation, the target number of replica is 8. In the figure[5(a)} when the mean value in-
creases every replication method takes less data traffic, because there are more reliable
nodes and they do not join/leave frequently.

As described on previous results, our replications can save more data traffic for any
cases. We pay attention to the difference between the quorum based replication and
the availability based replication. Generally, the availability based replication reduces
more traffic, however when the mean value is 2, the quorum based replication saves
more data traffic. The main reason of this fact is the join data traffic in figure 5(b)}
As we mentioned, the availability based replication takes more care of selecting the
new replicas when a new node joins. When the most of nodes join/leave frequently this
subtle care needs more replicas than the quorum and takes much more traffic.

5 Related Work

The commercial p2p file sharing systems leave the data replication up to the popularity
of the data. The popular data is replicated on many clients and the data availability of
this data is very high. However, the unpopular data are stored on few clients and it is
very hard to find this data because of very low data availability. To make the p2p storage
system durable, the smart data replication methods is needed and the each inserted data
is available for any time and has the similar data availability.

In the paper[9], they stores the replicas on the random nodes on the ID space and
periodically checks their availability. This behavior reduces the compulsory copy be-
cause the replication has no relation to the consistent set. However, this approach takes
too much control traffic to keep the node availability of all replicas for every object
on the system. Moreover, they do not use the consistent set and the change of the data
availability caused by the node failure is detected slowly. The paper [10]] shows that the
erasure coding approach reduces the traffic of the replication by using the computing
power. This approach is orthogonal to our approaches and we can use this coding with
our replication methods.

6 Conclusion

We explore the efficient replication methods to make the DHT based p2p storage system
more durable. Our replication methods are loosely coupled to the consistent set such as
a successor list of chord and a leaf set of pastry and interleave the replicas on it. Because
the consistent set updates the current state of nodes automatically, we can update the
data availability immediately under churn. Moreover, we use the node availability to
select more reliable replicas and we can reduce more data traffic when a node leaves.

924 K. Kim and D. Park

According to these behaviors, the DHT based p2p storage system with our replication
methods achieves the high data availability with small data traffic. This can encourage
that the DHT based p2p algorithms are applied to the durable storage system.

References

1. LStoica, R.Morris, D.Karger, M.F.Kaashoek, and H.Balakrishnan. Chord: a scalable peer-
to-peer lookup service for internet applications, In Proceedings of ACM SIGCOMM 2001,
August 2001.

2. A.Rowstron and P.Druschel. Pastry: scalable, decentralized object location and routing for
large-scale peer-to-peer systems, In Proceedings of Middleware, November 2001.

3. B.Y.Zhao, J.Kubiatowicz, and A.Joseph. Tapestry: An infrastructure for fault-tolerant wide-
area location and routing, UCB Technical Report UCB/CSD-01-114, 2001.

4. S.Ratnasamy, P.Francis, M.Handley, R.Karp, and S.Shenker. A scalable content-addressable
network, In Proceedings of ACM SIGCOMM 2001, 2001.

5. P. Druschel and A. rowstron. PAST: A large-scale, persistent peer-to-peer storage utility, In
Proceedings of HotOS VIII, May 2001.

6. F.Dabek, M.F. Kaashoek, D. Karger, R. Morris, and L. Stoica. Wide-area cooperative storage
with CFS, In Proceedings of SOSP 2001, Oct 2001.

7. S. Saroiu et al. A measurement study of peer-to-peer file sharing systems, In Proceedings of
MMCN 2002, 2002.

8. K.Kim and D.Park. Efficient and Scalable Client Clustering For Web Proxy Cache, IEICE
Transaction on Information and Systems, E§6-D(9), September 2003.

9. R. Bhagwan, K. Tati, Y. Cheng, S. Savage and G. M. Voelker. Total Recall: System Support
for Automated Availability Management, In Proceedings of NSDI 2004, 2004

10. R.Bhagwan, S. Savage, and G. M. Voelker. Replication Strategies for Highly Available Peer-
to-peer Storage Systems, In Proceedings of FuDiCo, June 2002.

11. C. Blake and R. Rodrigues. High Availability, Scalable Storage, Dynamic Peer Networks :
Pick Two, In Proceedings of HotOS-IX, May 2003.

12. R. Bhagwan, S. Savage, and G. M. Voelker. Understanding Availability, In Proceedings of
IPTPS 03, 2003.

	Introduction
	Background
	Proposed Idea
	Quorum Based Replication
	 Availability Based Replication
	Management of the Replication Set

	Evaluation
	Simulation Setup
	Reduction of Data Traffic
	Effect of Node Dynamicity

	Related Work
	Conclusion

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

